One way to help prevent IR and UV radiation damage which causes LCD failure is to implement a hot mirror with a UV blocker.
Before we get into specifics about how this would work, it is important to understand that liquid crystal display panels and polarizers utilize organic compounds that are susceptible to high heat and light energy stress. These organic compounds will eventually break down if deployed in high stress environments. One such contributing factor to LCD panel failure is the use of a high energy unfiltered illuminator. The near IR and shorter UV wavelengths not only add excess heat that may overheat the liquid crystal and prevent them from working properly, but they also add UV band energy that is destructive to organic compounds.
Over time the UV and IR will degrade and damage the LCD panel and polarizers to the point that they produce an unacceptably poor performance. In most applications this is observed to be color shift, washed out images and an observable raise in the darkness levels produced by a damaged LCD panel.
In order to help prolong the onset of such damage a set of UV and IR band filters and mirrors can be used to minimize the amount of harmful energy that is conveyed to the LCD panel from the illuminator. In order to determine what combination of filters and mirrors are best for any particular application it is important to know how each material reacts to the various intensities of bandwidths emitted by your chosen illuminator.
Frequently the Illuminators used in LCD systems are gas discharge lamps such as xenon arc lamps and metal halide light sources. A standard hot mirror that reflects energy between 750 and 1200 nm can be used to mitigate the majority of IR energy being conveyed to the LCD panel. In addition a UV blocker can be used to mitigate the damage from energy below 400 nm.
Other thin film coatings and substrates can be utilized to reduce the IR and UV damage to an LCD panel. Any solution must be well researched to minimize concerns so that a sufficient cooling mechanism is planned and allowed for in the application.